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B.1.  Coordinate Transformation Relations _____________________

In this appendix we derive and discuss the transformation relations
between curvilinear and orthogonal coordinate systems, and present an
example using the Boussinesq equations. Much of what follows is taken from
the book of Thompson et al., Numerical Grid Generation (Thompson et al.,
1985; hereafter TWM), Sharman et al. (1988), Fletcher (1988), and Shyy and
Vu (1991).  Although the transformation relations are general and appear
almost exclusively in two dimensional form in other references, we provide a
complete set of relevant equations valid in three dimensions.

The use of a generalized coordinate implies that a distorted region in
physical space will be mapped to a regular, rectangular region in computa-
tional space (Fletcher, 1988).  Consequently, it is extremely convenient to per-
form all computations in the transformed space where the grid mesh is uni-
form and Cartesian.  Consequently, techniques appropriate for standard
Cartesian models can be applied directly without modification.  This simplic-
ity does not come without a price, however, as one must pay close attention to
how the transformation metrics, which relate the physical grid to its computa-
tional counterpart, are discretized (e.g., Thomas and Lombard, 1978).  We will
return to this subtle yet important point after developing the transformation
relations and applying them to the governing dynamic equations.

Consider a general transformation from physical Cartesian coordinates
(x,y,z,t) to curvilinear coordinates (ξ,η,ζ,t), both in right-handed systems:

   x = x(ξ,η,ζ,t) (B.1a)

   y = y(ξ,η,ζ,t) (B.1b)

   z = z(ξ,η,ζ,t) (B.1c)
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where time is also considered in the transformation in situations where the
grid structure changes with time.  The goal is to express all terms of the gov-
erning hydrodynamic equations such that the independent variables are (ξ, η,
ζ, t).  Later we will consider various methods for ensuring conservation of
physically important quantities.  For the moment, let us consider a rather
fundamental example in which velocity gradient terms are transformed from
physical to computational space.  In matrix form, we have, via the chain rule,

   ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

=

∂u
∂ξ

∂u
∂η

∂u
∂ζ

∂v
∂ξ

∂v
∂η

∂v
∂ζ

∂w
∂ξ
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∂η

∂w
∂ζ

∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
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∂ζ
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∂ζ
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∂ζ
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(B.2a)

where the Jacobian matrix [J] of the transformation is given by

   

J ≡

∂ξ
∂x

∂ξ
∂y

∂ξ
∂z

∂η
∂x

∂η
∂y

∂η
∂z

∂ζ
∂x

∂ζ
∂y

∂ζ
∂z

 (B.2b)

(Fletcher, 1988).  That is, the Jacobian has the job of mapping the variables
from one coordinate system to the other.  Although one could easily work
with the components of the matrix [J], the individual terms, as written, utilize
the physical coordinates as independent variables;  this is contrary to our
desire of performing all computations in the transformed coordinate system
where the independent variables are (ξ,η,ζ,τ).  Consequently, it is more
convenient to work with the inverse Jacobian matrix, given by

   

J -1 ≡

∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 . (B.2c)
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Relationships between elements of [J] and those of its inverse will be given
below.  First, however, we note that, because the curvilinear coordinates are
not Cartesian, we must distinguish between the covariant and contravariant
base vectors and quantities.  The covariant base vectors are tangent to the
curvilinear coordinates, while the contravariant base vectors are orthogonal
(TWM p. 97-98).

B.1.1.  Covariant Equations

Consider a coordinate line along which only the coordinate ξ varies.
A tangent vector to this coordinate line is given by

   r (ξ + dξ) - r (ξ)
dξ =

dr
dξlim

dξ →0
.

These tangent vectors to the three coordinate lines are the three
covariant base vectors of the curvilinear coordinate system, and are given by

   
ai =

∂r

∂ξ i
(i = 1,2,3)  (B.3a)

where the three curvilinear coordinates (ξ,η,ζ) are represented by ξi and the

subscript i indicates the base vector corresponding to the ξi coordinate, i.e., the

tangent to the coordinate line along which only ξ i varies (ξ1 = ξ , ξ 2  = η, ξ3

= ζ).  One can also write (B.2) as

   a1 = xξ i + yξ j + zξk

a2 = xη i + yη j + zηk

a3 = xζ i + yζ j + zζk.

 (B.3b)

Associated with the covariant base vectors are covariant metric
components, which are used to represent differential increments of arc length,
surface area, and volume (see TWM, p. 100-102).  Presented here are the
components of the covariant 3 x 3 symmetric metric tensor.  In general,

   gij = a i ⋅ a j = gji . (B.4)

The components of this tensor are:
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   g11 = a1 ⋅ a1 = xξ
2 + yξ

2 + zξ
2

g22 = a2 ⋅ a2 = xη
2 + yη

2 + zη
2

g33 = a3 ⋅ a3 = xζ
2 + yζ

2 + zζ
2

 (B.5a)

   g13 = g31 = a1 ⋅ a3 = xξxζ + yξyζ + zξzζ

g23 = g21 = a2 ⋅ a3 = xηxζ + yηyζ + zηzζ

g21 = g12 = a1 ⋅ a2 = xξxη + yξyη + zξzη.

 (B.5b)

One can easily show by substitution that the Jacobian of the
transformation is related to the determinant of the inverse Jacobian matrix
(B.2c) by

   G = det gij = a1 ⋅ (a2 x a3) = J -1  (B.6)

(TWM, p. 102, Eq. 16; Fletcher, 1988, p. 51, Eq. 12.13) which can be written
in a more familiar manner as

   

G ≡ ∂(x,y,z)
∂(ξ,η,ζ)

=

xξ xη xζ
yξ yη yζ
zξ zη zζ

. (B.7)

Physically, the Jacobian of transformation  G  relates contributions to the
distances of arc length ∆s to small changes in the computational coordinate
via

   Area = G ∆ξ∆η

where, in the two-dimensional case,   ∆ξ and ∆η  represent grid spacings in the
computational coordinates.   See Fletcher (1988, p. 50-51) for further details.

B.1.2.  Relations Between Covariant and Contravariant Forms
(TWM, p. 108, 123)

The contravariant base vector is normal to the coordinate surface on
which the coordinate ξ is a constant and is given by
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   ai = ∇ξi (i = 1,2,3)  (B.8a)

or, when expanded, by

   a1 = ∇ξ = i ξx + j ξy + k ξz

a2 = ∇η = i ηx + j ηy + k ηz

a3 = ∇ζ = i ζx + j ζy + k ζz.

 (B.8b)

Note that the coordinate i appears as a superscript on the base vector in (B.8a).
We will adopt the convention that superscripts indicate contravariant
quantities and subscripts indicate covariant quantities.

The contravariant base vectors can be expressed as functions of the
covariant base vectors using well-known expressions (TWM, p. 108-109):

  
ai =

1

G
aj x ak (i = 1,2,3; i,j,k cyclic) . (B.9)

Also,

   
ai ⋅ aj =

1

G
ai ⋅ (ak x al) [j,k,l cyclic]  (B.10)

and thus

   ai ⋅ aj = δij . (B.11)

Consequently, any vector  A  can be written in terms of either set of base
vectors:

    
A = (ai ⋅ A) ai∑

i=1

3

 (B.12a)

    
A = (ai ⋅ A) a

i∑
i=1

3

. (B.12b)

where    Ai = ai ⋅ A  is the contravariant component and    Ai = ai ⋅ A is the

covariant component of the vector  A .
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The components of the 3 x 3 symmetric contravariant tensor may be
expressed as functions of the covariant components as follows:

  
g11 =

1
G

(g22g33 - g23
2 )

g22 =
1
G

(g33g11 - g13
2 )

g33 =
1
G

(g11g22 - g12
2 )

 (B.13a)

  
g12 = g21 =

1
G

(g23g31 - g21g33)

g13 = g31 =
1
G

(g21g32 - g22g31)

g23 = g32 =
1
G

(g31g12 - g32g11).

 (B.13b)

In general, we have

  
gil = gli =

1
G

(gjmgkn - gjngkm) [i = 1,2,3 cyclic, l = 1,2,3 cyclic].

(B.14a)

We can, using expressions developed earlier, now relate the elements
of the Jacobian matrix (in which x, y, and z are independent variables) to those
of its inverse where x, y, and z are the desired dependent variables by noting
that

  
J =

Transpose of Cofactor of J -1

J -1

 (Fletcher, 1988, p. 39, Eq. 12.7).  This yields

           

   
ξx =

(yη zζ - yζ zη)

G
, ξy =

(zη xζ - zζ xη)

G
, ξz =

(xη yζ - xζ yη)

G
,

ηx =
(yζ zξ - yξ zζ)

G
, ηy =

(zζ xξ - zξ xζ)

G
, ηz =

(xζ yξ - xξ yζ)

G
,

ζx =
(yξ zη - yη zξ)

G
, ζy =

(zξ xη - zη xξ)

G
, ζz =

(xξ yη - xη yξ)

G
.
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(B.14b)

In order to improve the conservation properties of the continuous
system, we use the Cartesian velocity components rather than the
contravariant components (see e.g., Vinokur, 1974; Viviand, 1974; Sharman
et al., 1988; and Shyy and Vu, 1991), and express all of the operators in terms
of contravariant variables in conservation form (see Section 7).  The following
identities (see TWM, p. 111) will therefore be useful in subsequent sections:

    
∇φ =

1

G

∂
∂ξi

( G ai φ)∑
i=1

3

(Conservative Gradient)
 (B.15a)

    
∇ ⋅ A =

1

G

∂
∂ξi

( G ai ⋅ A)∑
i=1

3

(Conservative Divergence)
 (B.15b)

    
∇2φ =

1

G

∂
∂ξi

G gij ∂φ
∂ξj∑

j=1

3

∑
i=1

3

(Conservative Laplacian)
 (B.15c)

   ∂A
∂t x

=
∂A
∂t ξ

- x ⋅ ∇A

(Time Derivative Transformation)
 (B.15d)

where, in the latter expression, x  is the vector speed of the moving grid
(TWM, Eq. 117, p. 129).

It is also often useful to express the contravariant base vectors in terms
of the covariant base vectors as follows.  From Sharman et al. (1988), we
know that
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   ∇ξ = a1 = g11 a1 + g12 a2 + g13 a3

∇η = a2 = g21 a1 + g22 a2 + g23 a3

∇ζ = a3 = g31 a1 + g32 a2 + g33 a3.

 (B.16)

Using (B.9) and (B.13), we have the inverse transformation:

   
ξ

xi
=

1
G

[ (g22g33 - g23
2 ) xi ξ

+ (g23g31 - g21g33) xi η
+ (g12g32 - g22g31) xi ζ

]

η
xi

=
1
G

[ (g23g31 - g21g33) xi ξ
+ (g33g11 - g13

2 ) xi η
+ (g31g12 - g32g11) xi ζ

]

ζ
xi

=
1
G

[ (g12g32 - g22g31) xi ξ
+ (g31g12 - g32g11) xi η

+ (g11g22 - g12
2 ) xi ζ

]

(B.17)

where the subscript i indicates the direction of differentiation, e.g., x2 = y,
ξ3 = ζ, etc.

B.2.  Application of the Transformation Relations to a Boussinesq
System of Conservation Laws _____________________

It is useful to illustrate the application of the transformation relations
in Section 6 to a somewhat simpler system (e.g., Sharman et al., 1988).  The
generalization to fully compressible equations is straightforward.

 B.2.1.  Scalar Transport Equation

Consider first the conservation equation for a scalar φ in an
incompressible fluid:

   ∂φ
∂t

+ ∇ ⋅ (Vφ) = S  (B.18)

where  V  is the velocity vector and S represents possible sources and sinks.
Applying (B.15b) to (B.18) and noting that the contravariant velocity
components are given by
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   Uc = V ⋅ a1

Vc = V ⋅ a2

Wc = V ⋅ a3

 (B.19)

we have, for the case in which the coordinate transformation is invariant
with time (Sharman et al., 1988, p. 1126, Eq. 7b),

   ∂( G φ)
∂t

+
∂( G Uc φ)

∂ξ +
∂( G Vc φ)

∂η +
∂( G Wc φ)

∂ζ = S G . (B.20)

In this case, the quantity    G φ  is conserved, and this equation is said to be in
strong conservation law form (for exhaustive treatments of various conserv-
ation law forms, see Thomas and Lombard, 1978; Hindman, 1981; Anderson
et al., 1984).

B.2.2.  Momentum Equation

In the case of momentum, Sharman et al. (1988) and, more recently,
Shyy and Vu (1991) discuss the difficulties encountered when writing the
conservation form.  Basically, we wish to have the equations in the
transformed system obey the same conservation properties as those in the
physical system.  To illustrate the issue, consider the momentum equation for
a Boussinesq fluid:

   ∂V
∂t

+ ∇ ⋅ (V V) = - ∇ p'
ρo

+ Bk  (B.21)

where p' is the deviation of pressure from hydrostatic balance, ρo is the
reference density, and B represents the buoyancy.  The term of concern in
(B.21) is the nonlinear flux, which is given by the divergence of a dyadic:

   ∇ ⋅ (V V).  (B.22a)

where  V  is the velocity.

Using rules similar to those defined in Section 6 for the divergence of
a vector, we can expand (B.22a) to yield (Sharman et al., 1988)
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∇ ⋅ (V V) =

1

G

∂
∂ξ [ G V(V ⋅ a1)] +

1

G

∂
∂η [ G V(V ⋅ a2)]

+
1

G

∂
∂ζ [ G V(V ⋅ a3)].

 (B.22b)

But, we also know from (B.12a) and (B.19) that

  V = Uc a1 + Vc a2 + Wc a3  (B.23)

so that the momentum equation in vector form becomes (Sharman et al., 1988;
Eq. 9):

                      

  ∂
∂t

[ G (Uc a1 + Vc a2 + Wc a3)] +
1

G

∂
∂ξ [ G Uc(Uc a1 + Vc a2 + Wc a3)]

+
1

G

∂
∂η [ G Vc (Uc a1 + Vc a2 + Wc a3)]

+
1

G

∂
∂ζ [ G Wc (Uc a1 + Vc a2 + Wc a3)] = - ∇ p'

ρo
+ Bk G .

(B.24)

(Note that B.23 may be written equivalently as   V = ui + vj + wk ;  to show
this, simply use the definitions of Uc, Vc, and Wc, Eq. (B.23), and the
contravariant base vectors — basically, this exercise verifies Eqs. (B.12).)

As clearly pointed out by Sharman et al. (1988), two decompositions
or choices of velocity variables are possible from this point, the choice being
somewhat problematic (scalars don’t enter here because they have no
directional dependence).  First of all, it is impossible to obtain a fully
conservative form of the hydrodynamic equations when using either the
covariant or contravariant velocities (e.g., Shyy and Vu, 1991) since linear
momentum is conserved along a straight line, not a curved one (note that in a
Cartesian system, this problem does not exist).  Consequently, if the
governing equations are written using either the covariant or contravariant
velocities, spurious source terms will arise due to the curvature of the
coordinate system.  On the other hand, the covariant and contravariant
velocities are defined in terms of local coordinates, not fixed coordinates as
for Cartesian velocity components, thus making the former preferable to the
latter if conservation isn’t a major issue. Furthermore, as pointed out by
Sharman et al. (1988) from earlier work by Vinokur (1974) and Viviand
(1974) a decomposition of the governing equations along the curvilinear
coordinates would involve a differentiation of the base vectors. Though
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straightforward, this procedure is deemed inadvisable since the base vectors
are already determined by the derivatives of the position vector r , and a
further differentiation may increase the vulnerability of the solution to
truncation error.

After considering these and other issues, we chose for illustration
purposes to follow the strategy of most transformed models and use the
Cartesian velocity components in the transformed coordinate system.  This
methodology decouples the velocity components from coordinate variations,
and is advantageous since most scientists can readily identify with Cartesian
velocity components.  Since Sharman et al. (1988) used this approach for
studying orographic flows on orthogonal and nonorthogonal grids, we will
basically follow their treatment since it is succinct and readily available in the
meteorological literature.

First, we employ the chain rule to write the Cartesian velocity
components as functions of the contravariant velocity components (assuming
for the moment that the grid does not change in time):

   
u = Uc ∂x

∂ξ + Vc ∂x
∂η + Wc ∂x

∂ζ

v = Uc ∂y
∂ξ + Vc ∂y

∂η + Wc ∂y
∂ζ

v = Uc ∂z
∂ξ + Vc ∂z

∂η + Wc ∂z
∂ζ .

 (B.25)

The inverse transformation is given by

  

   Uc = uξx + vξy + wξz

Vc = uηx + vηy + wηz

Wc = uζx + vζy + wζz

 (B.26a)

where, once again, Uc, Vc, and Wc are the contravariant velocity components.
As mentioned earlier, we desire that the independent variables be (ξ, η , ζ)
rather than (x , y , z), and thus we can use (B.14b) to express (B.26a) more
meaningfully as

   Uc G = uJηζ
yz + vJηζ

zx + wJηζ
xy

Vc G = uJζξ
yz + vJζξ

zx + wJζξ
xy

Wc G = uJξη
yz + vJξη

zx + wJξη
xy

(B.26b)



Appendix B. Coordinate Transformation

CAPS - ARPS Version 4.0 353

where the Jacobians of transformation are:

   
Jηζ

yz ≡ ∂(y,z)
∂(η,ζ)

Jηζ
zx ≡ ∂(z,x)

∂(η,ζ)
Jηζ

xy ≡ ∂(x,y)
∂(η,ζ)

Jζξ
yz ≡ ∂(y,z)

∂(ζ,ξ)
Jζξ

zx ≡ ∂(z,x)
∂(ζ,ξ)

Jζξ
xy ≡ ∂(x,y)

∂(ζ,ξ)

Jξη
yz ≡ ∂(y,z)

∂(ξ,η)
Jξη

zx ≡ ∂(z,x)
∂(ξ,η)

Jξη
xy ≡ ∂(x,y)

∂(ξ,η)
.

(B.27)

In this manner, we have effectively redefined the inverse
transformation relations as follows:

   Jηζ
yz = G ξx Jηζ

zx = G ξy Jηζ
xy = G ξz

Jζξ
yz = G ηx Jζξ

zx = G ηy Jζξ
xy = G ηz

Jξη
yz = G ζx Jξη

zx = G ζy Jξη
xy = G ζz.

 (B.28)

Eq. (B.26b) is also more appropriate for use in the governing equations than

(B.26a) since the former includes terms of the form   Uc G , matching those
in the flux terms of the momentum equation (B.24).  (It is immediately clear
from B.26a that the velocities in the transformed system are interdependent.
Consequently, one must put aside traditional thinking to avoid the notion that
an x-derivative of the zonal momentum involves only differences in the x-
direction;  in the transformed system, derivatives in one direction contain
terms in the other two coordinate directions as well!)

Using (B.26b) and the fact that   V = ui + vj + wk , we can write the
terms to be differentiated in the momentum equations as

  G Uc V = u G Uc i + v G Uc j + w G Uc k

G Vc V = u G Vc i + v G Vc j + w G Vc k

G Wc V = u G Wc i + v G Wc j + w G Wc k.

 (B.29)

This allows us to decompose the momentum equations along the (i, j , k)
directions using the Cartesian velocity component in the transformed,
curvilinear system.

Before doing this, let us return to the continuity equation (B.20) and
express it using the Cartesian velocity components (B.26b):
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   ∂( G φ)
∂t

+
∂ [φ (uJηζ

yz + vJηζ
zx + wJηζ

xy)]

∂ξ

+
∂[φ (uJζξ

yz + vJζξ
zx + wJζξ

xy)

∂η

+
∂[φ (uJξη

yz + vJξη
zx + wJξη

xy)

∂ζ = S G .

 (B.30)

This equation is still written in strong conservation law form, and will con-

serve the property    G φ  if an appropriate discretization is used for the spatial
derivatives.  In order to reduce the visual complexity of this equation, one
could solve it using the form given by (B.20) and simply define the contra-
variant velocities (B.26b) as separate quantities to be pre-computed each time-
step and inserted during the integration.

Returning finally to the momentum equation (B.24), we substitute
  V = ui + vj + wk  in the time derivative and use (B.29) in the flux terms to

arrive at the final form that is readily decomposed along the   i, j, k  directions
utilizing Cartesian velocity components in the transformed coordinate system
(note that we have used B.15a to obtain the pressure gradient terms):

Zonal momentum equation:

   ∂
∂t

(u G ) =

- [
∂
∂ξ {u (uJηζ

yz + vJηζ
zx + wJηζ

xy)} +
∂

∂η {u (uJζξ
yz + vJζξ

zx + wJζξ
xy)}

+
∂
∂ζ {u (uJξη

yz + vJξη
zx + wJξη

xy)} ]

- [
∂
∂ξ (

P'
ρo

Jηζ
yz ) +

∂
∂η (

P'
ρo

Jζξ
yz) +

∂
∂ζ (

P'
ρo

Jξη
yz )].

 

(B.31a)

Meridional momentum equation:
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   ∂
∂t

(v G ) =

- [
∂
∂ξ {v (uJηζ

yz + vJηζ
zx + wJηζ

xy)} +
∂

∂η {v (uJζξ
yz + vJζξ

zx + wJζξ
xy)}

+
∂
∂ζ {v (uJξη

yz + vJξη
zx + wJξη

xy)} ]

- [
∂
∂ξ (

P'
ρo

Jηζ
zx ) +

∂
∂η (

P'
ρo

Jζξ
zx) +

∂
∂ζ (

P'
ρo

Jξη
zx )].

 

(B.31b)

Vertical momentum equation:

   ∂
∂t

(w G ) =

- [
∂
∂ξ {w (uJηζ

yz + vJηζ
zx + wJηζ

xy)} +
∂

∂η {w (uJζξ
yz + vJζξ

zx + wJζξ
xy)}

+
∂
∂ζ {w (uJξη

yz + vJξη
zx + wJξη

xy)} ]

- [
∂
∂ξ (

P'
ρo

Jηζ
xy) +

∂
∂η (

P'
ρo

Jζξ
xy) +

∂
∂ζ (

P'
ρo

Jξη
xy)] - B G .

(B.31c)


